Antiferromagnetic complexes with metal-metal bonds

XXII *. Synthesis, molecular structure and magnetic properties of the salt $\left[\mathrm{Cp}_{3} \mathrm{Cr}_{3}\left(\mu_{3}-\mathrm{O}\right)(\mu-\mathrm{OCMe})_{3}\right]^{+}\left[\mathrm{CpMo}(\mathrm{CO})_{3}\right]^{-}$with a trinuclear cyclopentadienyl-oxo-t-butoxide cluster cation

S.E. Nefedov, A.A. Pasynskii ${ }^{\star}$, I.L. Eremenko, B. Orazsakhatov, O.G. Ellert, V.M. Novotortsev,
N.S. Kurnakov Institute of General and Inorganic Chemistry, Academy of Sciences of the U.S.S.R., 31 Leninsky prospekt, 117071 Moscow (U.S.S.R.)

Yu.T. Struchkov and A.I. Yanovsky
A.N. Nesmeyanov Institute of Organoplement Compounds, Academy of Sciences of the U.S.S.R., 28 Vavilov St., 117813 Moscow (U.S.S.R.)

(Received September 5th, 1989)

Abstract

The reaction of $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mu-\mathrm{OR})_{2}\left(\mathrm{I}, \mathrm{R}=\mathrm{CMe}_{3}\right)$ with $\left[\mathrm{CpMo}(\mathrm{CO})_{3}\right]_{2}$ has been studied. It has been shown that in the first stage an extremely unstable adduct of I with a $\mathrm{CpMo}(\mathrm{CO})_{3}$ group (isocarbonyl-type coordination) is formed. This adduct is easily oxidized by atmospheric oxygen, forming a $45 \overline{\mathrm{e}}$ antiferromagnetic trinuclear cation $\left[\mathrm{Cp}_{3} \mathrm{Cr}_{3}\left(\mu_{3}-\mathrm{O}\right)\left(\mu-\mathrm{OCMe}_{3}\right)_{3}\right]^{+}$and $\left[\mathrm{CpMo}(\mathrm{CO})_{3}\right]^{-}$anion $(\mathrm{V},-2 J(\mathrm{Cr}-\mathrm{Cr})=$ $60 \mathrm{~cm}^{-1}$). According to the results of an X-ray diffraction study (space group $\left.P 2_{1} / c, a \operatorname{21.762(5);} b 11.395(3) ; c 29.886(8) \AA ; \beta 93.07(2)^{\circ}, Z=8, V 7400.4 \AA^{3}\right)$, the metal core of cation V represents an almost ideal triangle $(\mathbf{C r}-\mathrm{Cr}$ $2.920(6)-2.956(6) \AA$), whose edges are bridged by OR groups ($\mathrm{Cr}-\mathrm{O} 1.99(2)-2.03(1)$ A) located under the Cr_{3} plane. On the other hand, μ_{3}-bridging oxygen atoms $\left(\mathrm{Cr}-\mathrm{O} 1.89(2)-1.91(1) \AA\right.$) and the centres of the $\mathrm{C}_{5} \mathrm{H}_{5}$ rings bonded to each Cr atom are located over the Cr_{3} plane.

Introduction

Earlier we have seen [1] that the antiferromagnetic ($-2 J 246 \mathrm{~cm}^{-1}$) complex $\mathrm{Cp}_{2} \mathrm{Cr}_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{2}$ (I) with a short $\mathrm{Cr}-\mathrm{Cr}$ bond (2.635 \AA) and a non-linear

[^0]CpCrCrCp fragment (CpCrCr angle $143.9 ; 146.3^{\circ}$) [2] reacts in different ways with $\mathrm{Fe}(\mathrm{CO})_{5}$ and $\mathrm{CO}_{2}(\mathrm{CO})_{8}$. In the first case, a triangular $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mu-\mathrm{OCMe})_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ cluster (II) is formed, in which a carbenoid fragment, $\mathrm{Fe}(\mathrm{CO})_{4}$, is attached by two direct $\mathrm{Fe}-\mathrm{Cr}$ bonds ($2.7 \AA$); the CpCrCrCp fragment becomes linear and the interaction of the d_{z}-orbitals and consequently the exchange antiferromagnetic interactions in the dichromium system ($-2 J 304 \mathrm{~cm}^{-1}$) becomes stronger [1].

On the other hand, $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ is readily reduced to form $\mathrm{Co}(\mathrm{CO})_{4}$ and in reaction with I gives a $\mathrm{Cp}_{2} \mathrm{Cr}_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{2}-\left[\mathrm{OCCO}_{3}(\mathrm{CO})_{9}\right]$ cluster (III) [3], in which a tricobaltdecacarbonyl fragment is attached to one of the chromium atoms via the oxygen atom of the tridentate CO group. III is probably formed by the addition of a $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ fragment to the carbyne intermediate $\mathrm{Cp}_{2} \mathrm{Cr}_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{2} \mathrm{OCCo}(\mathrm{CO})_{3}$. The chromium atoms in III are in different oxidation states, while the cobalt-containing group behaves like a usual terminal alkoxide ligand. As a result, the non-linear distortion of the CpCrCrCp fragment is more pronounced (CpCrCr 117.2° and 155.7°); the overlap of the d_{z}-orbitals is hindered; and the $\mathrm{Cr}-\mathrm{Cr}$ bond ($2.766 \AA$) and consequently the antiferromagnetic interactions ($-2 J 180$ cm^{-1}) are weakened.

In this work the interaction of $\left[\right.$ with the dimer $\left[\mathrm{CpMo}(\mathrm{CO})_{3}\right]_{2}$ was studied; the latter readily generates $\mathrm{CpMo}(\mathrm{CO})_{3}{ }^{-}$, which is capable of isocarbonyl-type coordination, eg. in the complex $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{thf}) \mathrm{OCMo}(\mathrm{CO})_{2} \mathrm{Cp}[4]$.

Results and discussion

$\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mathrm{OR})_{2}\left(\mathrm{I}, \mathrm{R}=\mathrm{CMe}_{3}\right)$ reacts readily with $\left[\mathrm{CpMo}(\mathrm{CO})_{3}\right]_{2}$ under reflux in benzene. The interaction is accompanied by a change in colour of the reaction mixture from red to brown-yellow. Therewith, the CO bands characteristics of the initial $\left[\mathrm{CpMo}(\mathrm{CO})_{3}\right]_{2}$ disappear in the IR spectrum, giving way to two bands of approximately equal intensity at 1845 and $1765 \mathrm{~cm}^{-1}$, which are characteristic of the $\mathrm{MOCMo}(\mathrm{CO})_{2} \mathrm{Cp}$ fragment [5]. However, this intermediate is extremely sensitive to atmospheric oxygen and is immediately oxidized, giving the ionic cluster $\left[\mathrm{Cp}_{3} \mathrm{Cr}_{3}\left(\mu_{3}-\mathrm{O}\right)(\mu-\mathrm{OCMe})_{3}\right)^{+}\left[\mathrm{CpMo}(\mathrm{CO})_{3}\right]^{-}(\mathrm{V}, 20 \%$ yield $)$, which is probably formed following Scheme 1 via the $\mathrm{Cp}_{2} \mathrm{Cr}_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{2}(\mu-\mathrm{O})$ intermediate. The possibility of the formation of this kind of complex has recently been proved by the synthesis of the $\mathrm{Cp}_{2} \mathrm{Cr}_{2}\left(\mu \text { - } \mathrm{OCMe}_{3}\right)_{2}(\mu$ - Se) complex ($\mathrm{Cr}-\mathrm{Cr} 2.61 \AA$) [6]. V was isolated as green-brown crystals. In the IR spectrum of V , there are the CO stretching vibration bands at 1770,1910 and $1945 \mathrm{~cm}^{-1}$ typical of the $\mathrm{CpMo}(\mathrm{CO})_{3}$ anion observed [7]. According to the results of an X-ray diffraction study, the metal core of cation V(Fig. 1) represents a triangle with almost equivalent $\mathrm{Cr}-\mathrm{Cr}$ distances $(2.920(6), 2.943(6)$ and $2.956(6) \AA)$. All the edges of the triangle are bridged by OCMe_{3} groups ($\mathrm{Cr}-\mathrm{O} 1.99(2)-2.05(2) \AA$) which are located on the opposite side of the Cr_{3} plane relative to a μ_{3}-bridging oxygen atom equivalently bonded to all the metal atoms ($\mathrm{Cr}-\mathrm{O}$ 1.89(2)-1.91(1) \AA); the $\mu_{3}-\mathrm{O}$ atom is displaced from the Cr_{3} plane by $0.85(1) \AA$. The centres of the $\mathrm{C}_{5} \mathrm{H}_{5}$ rings bonded to each chromium atom are displaced in the same direction, the CpCrCrCp fragment being non-linear ($\mathrm{CpCrCr} 135^{\circ}$). Thus, the geometry of each binuclear fragment $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mu-\mathrm{OR})(\mu-\mathrm{O})(\mathrm{X})_{2} \quad(\mathrm{X}=\mu-\mathrm{OR})$ in the triangular cation $\left[\mathrm{Cp}_{3} \mathrm{Cr}_{3}\left(\mu_{3}-\mathrm{O}\right)(\mu-\right.$ $\left.\mathrm{OR})_{3}\right]^{+}$is very much the same as the geometry of the antiferromagnetic $(-2 J 70$ $\mathrm{cm}{ }^{1}$) dimer $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mu-\mathrm{OR})_{2}(\mathrm{OR})_{2}(\mathrm{Cr}-\operatorname{Cr} 3.005 \AA)\left(\mathrm{VI}, \mathrm{R}=\left(\mathrm{Ce}_{3}\right)\right.$ [3], which we

(III)
$\uparrow\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}$

10

CpMo(CO) ${ }_{3}^{-}$

Scheme 1.

Fig. 1. Molecular structure of the cluster cation $\mathrm{Cp}_{3} \mathrm{Cr}_{3}\left(\mu_{3}-\mathrm{O}\right)(\mu-\mathrm{OR})_{3}{ }^{+}$.
have recently described. The only difference is the planarity of the Cp (centroid) CrCrCp (centroid) system in molecule V (the corresponding torsion angle in VI is equal to 27°). In such a situation, the $\mathrm{Cr}-\mathrm{Cr}$ bonds in the cluster cation, as well as those in VI, are considerably weakened in comparison with I because of the increase in non-linearity of the CpCrCrCp fragment. Therefore, in the electron-deficient ($45 \overline{\mathrm{e}}$) complex V there is an additional π-interaction of the μ-OR and $\mu_{3}-\mathrm{O}$ lone electron pairs with the half-filled Cr^{111} orbitals, which should strengthen the $\mathrm{Cr}-\mathrm{O}$ bonding and indirect antiferromagnetic exchange. However, the significant decrease in the direct exchange due to the weakening of the $\mathrm{Cr}-\mathrm{Cr}$ bonds seems more important. The effective magnetic moment of V decreases from 2.96 to 2.37 BM in the temperature range $77-296 \mathrm{~K}$, which corresponds to the Heisenberg-Dirac-Van Vleck model [8] for an ideal triangular trimer with exchange parameter $-2 J(\mathrm{Cr}-\mathrm{Cr}) 60 \mathrm{~cm}^{-1}$ and spin values $S=3 / 2$.

It is noteworthy that complex III is the first example of a trinuclear cluster of chromium(III) with alkoxide bridges. It is formally analogous to the well-known oxocarboxylate clusters of the $\mathrm{L}_{3} \mathrm{Cr}_{3}\left(\mu_{3}-\mathrm{O}\right)(\mu \text {-OOCR })_{6}{ }^{+}$type with monodentate ligands $\mathrm{L}=\mathrm{Py}$, THF, etc. [9]. The ligand L and two O atoms of the carboxylate bridges occupy three coordination positions at the Cr atom, as well as the $\mathrm{C}_{5} \mathrm{H}_{5}$ ligand. However, in the carboxylate clusters the $\mathrm{Cr} \ldots \mathrm{Cr}$ distances are elongated to $3.3 \AA$, and the exchange parameter consequently decreases to $10-20 \mathrm{~cm}^{-1}$ [9]. On
the other hand, the geometry of V resembles that of the 42-electron diamagnetic "crown-like" sulphide cluster $\mathrm{Cp}_{3} \mathrm{Mo}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mu-\mathrm{S})_{3}^{+}[10]$ and the nitrene cluster $\mathrm{Cp}_{3} \mathrm{Cr}_{3}\left(\mu_{3}-\mathrm{NPh}\right)(\mu-\mathrm{NPh})_{3}^{+} \mathrm{OH}^{-}[11]$ with short $\mathrm{Mo}-\mathrm{Mo}(2.81 \AA)$ and $\mathrm{Cr}-\mathrm{Cr}(2.530$

Table 1
 $\mathrm{O} \times 10^{4}$, for $\mathrm{C} \times 10^{3}$).

Atom	x	y	z	Atom	x	y	z
Mo(1)	6330(1)	$35(2)$	1062(1)	C(25)	969(2)	$669(3)$	41(1)
Mo(2)	8598(1)	5360(3)	3943(1)	C(26)	1018(2)	480(3)	69(1)
$\mathrm{Cr}(1)$	6439(2)	-1094(4)	3220(1)	C(27)	776(1)	$555(3)$	$65(1)$
$\mathrm{Cr}(2)$	5349(2)	-275(4)	3676(1)	C(28)	771 (3)	658(4)	40(1)
$\mathrm{Cr}(3)$	6145(2)	1424(4)	3260(1)	C(29)	$727(2)$	471(5)	66(1)
$\mathrm{Cr}(4)$	8133(2)	4763(4)	1657(1)	C(30)	820(2)	482(6)	37(1)
$\mathrm{Cr}(5)$	9471(2)	4922(4)	1724(1)	Cp(1)	594(2)	$-16(3)$	29(1)
$\mathrm{Cr}(6)$	8747(2)	6845(4)	1300(2)	Cp(2)	583(2)	98(3)	44(1)
O(1)	6454(14)	-2487(20)	1434(10)	$\mathrm{Cp}(3)$	638(2)	160(3)	53(1)
O(2)	5280(10)	323(23)	1736(7)	Cp(4)	686(2)	83(3)	45(1)
$\mathrm{O}(3)$	7281(10)	698(18)	1860(6)	Cp(5)	$661(2)$	-29(3)	31(1)
$\mathrm{O}(4)$	8994(12)	3461(20)	3249(7)	Cp(6)	892(3)	460(4)	467(1)
O(5)	7289(10)	4774(20)	3585(8)	$\mathrm{Cp}(7)$	835(2)	538(5)	474(1)
O(6)	8675(13)	7131(24)	3134(9)	$\mathrm{Cp}(8)$	857(2)	646(4)	462(1)
O(7)	5768(7)	-45(15)	3137(5)	Cp(9)	$919(2)$	645(4)	451(1)
$\mathrm{O}(8)$	6051(7)	-1381(14)	3821(5)	Cp(10)	937(2)	539(4)	455(1)
O(9)	5763(8)	1205(14)	3859(5)	Cp(11)	673(2)	- 294(2)	302(1)
$\mathrm{O}(10)$	6887(8)	388(15)	3377(5)	$\mathrm{Cp}(12)$	714(2)	-214(3)	284(1)
O(11)	8768(8)	5850(14)	1820(5)	$\mathrm{Cp}(13)$	679(2)	- 144(3)	254(1)
O(12)	8842(8)	3741(14)	1519(6)	$\mathrm{Cp}(14)$	615(2)	-180(3)	252(1)
O(13)	$9478(8)$	5889(14)	1156(5)	Cp(15)	613(2)	-272(3)	283(1)
O(14)	8105(8)	5704(14)	1079(6)	$\mathrm{Cp}(16)$	438(1)	28(3)	384(1)
C(1)	642(1)	-157(3)	128(1)	$\mathrm{Cp}(17)$	$441(1)$	27(3)	340(1)
C(2)	565(1)	23(2)	151(1)	$\mathrm{Cp}(18)$	450(1)	-78(3)	323(1)
C(3)	695(1)	48(2)	158(1)	$\mathrm{Cp}(19)$	458(1)	-157(3)	360(1)
C(4)	888(2)	413(3)	349(1)	$\mathrm{Cp}(20)$	449(1)	-83(4)	399(1)
C(5)	780(1)	500(3)	372(1)	$\mathrm{CP}_{\mathrm{P}}(21)$	651(1)	298(3)	287(1)
C(6)	866(2)	653(3)	345(1)	$\mathrm{Cp}(22)$	606(1)	340(3)	311(1)
C(7)	616(1)	-231(2)	416(1)	$\mathrm{Cp}(23)$	549(1)	284(2)	298(1)
C(8)	586(2)	-344(2)	402(1)	$\mathrm{Cp}(24)$	561(2)	204(2)	263(1)
C(9)	688(1)	-242(3)	424(1)	Cp(25)	626(2)	212(2)	257(1)
C(10)	591(2)	-181(3)	460(1)	Cp(26)	$789(1)$	418(3)	235 (1)
C(11)	580(1)	192(2)	426(1)	$\mathrm{Cp}(27)$	$768(1)$	534(3)	228(1)
C(12)	554(2)	138(3)	464(1)	Cp(28)	723(1)	535(3)	193(1)
C(13)	630(2)	270(4)	431(1)	$\mathrm{Cp}(29)$	714(1)	423(3)	177(1)
C(14)	533(3)	298(4)	416(1)	$\mathrm{Cp}(30)$	753(1)	347(3)	203(1)
C(15)	$756(1)$	67(3)	344(1)	Cp(31)	1016(2)	375(3)	213(1)
C(16)	782(1)	$79(3)$	297(1)	$\mathrm{Cp}(32)$	1047(1)	469(3)	196(1)
C(17)	762(1)	183(3)	373(1)	Cp(33)	1025(1)	581(3)	211(1)
C(18)	785(1)	-35(3)	369(1)	Cp(34)	980(1)	545(4)	242(1)
C(19)	888(1)	243(2)	143(1)	$\mathrm{Cp}(35)$	976(1)	421(3)	241(1)
C(20)	890(2)	181(3)	190(1)	$\mathrm{Cp}(36)$	817(1)	846(3)	127(1)
C(21)	829(2)	209(3)	$113(1)$	Cp(37)	868(2)	863(2)	101(1)
$\mathrm{C}(22)$	947(2)	222(3)	115(1)	CP (38)	922(2)	863(2)	132(1)
$\mathrm{C}(23)$	993(2)	597(3)	79(1)	$\mathrm{Cp}(39)$	$900(2)$	843(3)	171(1)
$\mathrm{C}(24)$	1051(2)	674(4)	102(1)	$\mathrm{Cp}(40)$	839(2)	833(3)	174(2)

A) bonds, respectively. The character of the bridging ligands is obviously the main factor determining the geometrical and magnetic properties of triangular clusters of the $\mathrm{Cp}_{3} \mathrm{M}_{3} \mathrm{X}_{4}$ type.

Experimental

All operations connected with the synthesis of the initial compounds or new complexes were carried out under pure argon in absolute solvents. The initial compounds $\mathrm{Cp}_{2} \mathrm{Cr}$ and I were prepared by techniques described previously [2,12]. IR spectra were recorded with Specord IR-75 spectrometer; spectra of the benzene solutions of IV were recorded in KBr cells, while spectra of V were recorded in KBr pellets. Magnetic susceptibility was measured according to the Faraday method with an instrument designed in the Institute of General and Inorganic Chemistry [13]. X-ray diffraction data were obtained with an automatic Hilger \& Watts diffractometer ($\lambda\left(\mathrm{Mo}-K_{\alpha}\right), \theta-2 \theta$ scan, $2 \theta \leqslant 60^{\circ}, T 20^{\circ} \mathrm{C}, 4674$ reflections). Crystals of V are monoclinic, space group $P 2_{1} / c, a 21.762(6), b 11.395(3)$, c 29.866 (8) \AA, β $93.07(2)^{\circ}, ~ Z=8^{*}, V 7400.4 \mathrm{~A}^{3}$. The structure of the ionic complex was solved by the direct method using a modified MULTAN program of the INEXTL program package [14]. All non-hydrogen atoms were refined by means of the least-squares technique in anisotropic block-diagonal approximation to $R_{1} 7.70 \%, R_{w} 10.20 \%$ (Table 1). Relevant bond lengths and bond angles are listed in Tables 2 and 3.
$\left.\left[\mathrm{Cp}_{2} \mathrm{Cr}_{2}\left(\mu_{3}-\mathrm{O}\right)(\mathrm{\mu}-\mathrm{OCMe})_{3}\right]^{+}[\mathrm{CpMorCO})_{3}\right]^{-\quad}$ (V)
A solution of $0.4 \mathrm{~g}(0.8 \mathrm{mmol})$ of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3}\right]_{2}$ in 10 ml of benzene was added to 15 ml of a red-brown solution of $\mathrm{CP}_{2} \mathrm{Cr}_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{2}$ (obtained from 0.6 g (3.8 mmol) of chromocene and HOCMe_{3}) in benzene. The reaction mixture was refluxed for 0.5 h , and then air was bubbled through the resulting brown solution

Table 2
Bond lengths $d(\AA)$ of the cluster $\mathrm{Cp}_{3} \mathrm{Cr}_{3}\left(\mu_{3}-\mathrm{O}\right)\left(\mu-\mathrm{OCMe}_{3}\right)_{3}{ }^{+} \mathrm{CpMo}_{\mathrm{P}}(\mathrm{CO})_{3}{ }^{*}$ (V)

Bond	$d(\AA)$	Bond	$d(\AA)$
$\operatorname{Cr}(1)-\mathrm{Cr}(2)$	$2.950(6)$	$\mathrm{Cr}(5)-\mathrm{Cr}(6)$	$2.946(7)$
$\mathrm{Cr}(1)-\mathrm{Cr}(3)$	$2.943(6)$	$\mathrm{Cr}(4)-\mathrm{O}(11)$	$1.90(2)$
$\mathrm{Cr}(2)-\mathrm{Cr}(3)$	$2.920(6)$	$\mathrm{Cr}(4)-\mathrm{O}(12)$	$1.99(2)$
$\mathrm{Cr}(1)-\mathrm{O}(7)$	$1.91(1)$	$\mathrm{Cr}(4)-\mathrm{O}(14)$	$2.03(2)$
$\mathrm{Cr}(1)-\mathrm{O}(8)$	$2.05(2)$	$\mathrm{Cr}(5)-\mathrm{O}(11)$	$1.89(2)$
$\mathrm{Cr}(1)-\mathrm{O}(10)$	$1.99(2)$	$\mathrm{Cr}(5)-\mathrm{O}(12)$	$1.99(2)$
$\mathrm{Cr}(2)-\mathrm{O}(7)$	$1.91(1)$	$\mathrm{Cr}(5)-\mathrm{O}(13)$	$2.03(2)$
$\mathrm{Cr}(2)-\mathrm{O}(8)$	$2.01(2)$	$\mathrm{Cr}(6)-\mathrm{O}(11)$	$1.92(2)$
$\mathrm{Cr}(2)-\mathrm{O}(9)$	$1.98(2)$	$\mathrm{Cr}(6)-\mathrm{O}(14)$	$1.99(2)$
$\mathrm{Cr}(3)-\mathrm{O}(7)$	$1.89(2)$	$2.00(2)$	
$\mathrm{Cr}(3)-\mathrm{O}(9)$	$2.03(2)$		
$\mathrm{Cr}(3)-\mathrm{O}(10)$	$2.01(2)$		
$\mathrm{Cr}(4)-\mathrm{Cr}(5)$	$2.913(6)$		
$\mathrm{Cr}(4)-\mathrm{Cr}(6)$	$2.951(6)$		

[^1]Table 3
Bond angles of the cluster $\mathrm{Cp}_{3} \mathrm{Cr}_{3}\left(\mu_{3}-\mathrm{O}\right)\left(\mu-\mathrm{OCMe}_{3}\right)_{3}^{+} \mathrm{CpMo}(\mathrm{CO})_{3}^{-}$(V)

Angle	$\omega\left({ }^{\circ}\right.$)	Angle	$\omega\left({ }^{\circ}\right.$)
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{Cr}(3)$	59.4(1)	$\mathrm{Cr}(2) \mathrm{Cr}(3) \mathrm{O}(10)$	91.5(5)
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{O}(7)$	39.3(5)	$\mathrm{O}(7) \mathrm{Cr}(3) \mathrm{O}(9)$	82.4(7)
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{O}(8)$	42.9(5)	$\mathrm{O}(7) \mathrm{Cr}(3) \mathrm{O}(10)$	81.4(7)
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{O}(10)$	91.0(5)	$\mathrm{O}(9) \mathrm{Cr}(3) \mathrm{O}(10)$	97.8(7)
$\mathrm{O}(7) \mathrm{Cr}(1) \mathrm{O}(8)$	82.2(7)	$\mathrm{Cr}(5) \mathrm{Cr}(4) \mathrm{Cr}(6)$	60.3(2)
$\mathrm{O}(7) \mathrm{Cr}(1) \mathrm{O}(10)$	81.9(7)	$\mathrm{Cr}(5) \mathrm{Cr}(4) \mathrm{O}(11)$	39.7(5)
$\mathrm{Cr}(3) \mathrm{Cr}(1) \mathrm{O}(7)$	39.0(5)	$\mathrm{Cr}(5) \mathrm{Cr}(4) \mathrm{O}(12)$	43.0(5)
$\mathrm{Cr}(3) \mathrm{Cr}(1) \mathrm{O}(8)$	91.1(5)	$\mathrm{Cr}(5) \mathrm{Cr}(4) \mathrm{O}(14)$	90.6(5)
$\mathrm{Cr}(3) \mathrm{Cr}(1) \mathrm{O}(10)$	43.0(5)	$\mathrm{Cr}(6) \mathrm{Cr}(4) \mathrm{O}(11)$	39.8(5)
$\mathrm{O}(8) \mathrm{Cr}(1) \mathrm{O}(10)$	98.5 (7)	$\mathrm{Cr}(6) \mathrm{Cr}(4) \mathrm{O}(12)$	91.4(5)
$\mathrm{Cr}(1) \mathrm{Cr}(2) \mathrm{Cr}(3)$	60.2(1)	$\mathrm{Cr}(6) \mathrm{Cr}(4) \mathrm{O}(14)$	42.4(5)
$\mathrm{Cr}(1) \mathrm{Cr}(2) \mathrm{O}(7)$	39.0(5)	$\mathrm{O}(11) \mathrm{Cr}(4) \mathrm{O}(12)$	82.7(7)
$\mathrm{Cr}(1) \mathrm{Cr}(2) \mathrm{O}(8)$	43.9(5)	$O(11) \mathrm{Cr}(4) \mathrm{O}(14)$	82.1(7)
$\mathrm{Cr}(1) \mathrm{Cr}(2) \mathrm{O}(9)$	91.8(5)	$\mathrm{O}(12) \mathrm{Cr}(4) \mathrm{O}(14)$	$96.9(7)$
$\mathrm{Cr}(3) \mathrm{Cr}(2) \mathrm{O}(7)$	39.6(5)	$\mathrm{Cr}(4) \mathrm{Cr}(5) \mathrm{Cr}(6)$	60.5(2)
$\mathrm{Cr}(3) \mathrm{Cr}(2) \mathrm{O}(8)$	92.6(5)	$\mathrm{Cr}(4) \mathrm{Cr}(5) \mathrm{O}(11)$	39.9(5)
$\mathrm{Cr}(3) \mathrm{Cr}(2) \mathrm{O}(9)$	43.9(5)	$\mathrm{Cr}(4) \mathrm{Cr}(5) \mathrm{O}(12)$	43.1(5)
$\mathrm{O}(7) \mathrm{Cr}(2) \mathrm{O}(8)$	82.8(7)	$\mathrm{Cr}(4) \mathrm{Cr}(5) \mathrm{O}(13)$	91.6(5)
$\mathrm{O}(7) \mathrm{Cr}(2) \mathrm{O}(9)$	83.4(7)	$\mathrm{Cr}(6) \mathrm{Cr}(5) \mathrm{O}(11)$	39.9(5)
$\mathrm{O}(8) \mathrm{Cr}(2) \mathrm{O}(9)$	98.3(7)	$\mathrm{Cr}(6) \mathrm{Cr}(5) \mathrm{O}(12)$	91.6(5)
$\mathrm{Cr}(1) \mathrm{Cr}(3) \mathrm{Cr}(2)$	60.4(1)	$\mathrm{Cr}(6) \mathrm{Cr}(5) \mathrm{O}(13)$	42.4(5)
$\mathrm{Cr}(1) \mathrm{Cr}(3) \mathrm{O}(7)$	39.0(5)	$\mathrm{O}(11) \mathrm{Cr}(5) \mathrm{O}(12)$	82.9(7)
$\mathrm{Cr}(1) \mathrm{Cr}(3) \mathrm{O}(9)$	90.9(5)	$\mathrm{O}(11) \mathrm{Cr}(5) \mathrm{O}(13)$	82.3(7)
$\mathrm{Cr}(1) \mathrm{Cr}(3) \mathrm{O}(10)$	42.4(5)	$\mathrm{O}(12) \mathrm{Cr}(5) \mathrm{O}(13)$	98.3(7)
$\mathrm{Cr}(2) \mathrm{Cr}(3) \mathrm{O}(7)$	40.0(5)	$\mathrm{Cr}(4) \mathrm{Cr}(6) \mathrm{Cr}(5)$	59.2(2)
$\mathrm{Cr}(2) \mathrm{Cr}(3) \mathrm{O}(9)$	42.5(5)	$\mathrm{Cr}(4) \mathrm{Cr}(6) \mathrm{O}(11)$	39.2(5)
$\mathrm{Cr}(4) \mathrm{Cr}(6) \mathrm{O}(13)$	91.2(5)	$\mathrm{O}(11) \mathrm{Cr}(6) \mathrm{O}(13)$	82.4(7)
$\mathrm{Cr}(4) \mathrm{Cr}(6) \mathrm{O}(14)$	43.4(5)	$\mathrm{O}(11) \mathrm{Cr}(6) \mathrm{O}(14)$	$82.5(7)$
$\mathrm{Cr}(5) \mathrm{Cr}(6) \mathrm{O}(11)$	39.1(5)	$\mathrm{O}(13) \mathrm{Cr}(6) \mathrm{O}(14)$	97.2(7)
$\mathrm{Cr}(5) \mathrm{Cr}(6) \mathrm{O}(13)$	43.3(5)	$\mathrm{Cr}(1) \mathrm{O}(7) \mathrm{Cr}(2)$	101.7(7)
$\mathrm{Cr}(5) \mathrm{Cr}(6) \mathrm{O}(14)$	90.4(5)	$\mathrm{Cr}(1) \mathrm{O}(7) \mathrm{Cr}(3)$	102.0(7)
$\mathrm{Cr}(2) \mathrm{O}(7) \mathrm{Cr}(3)$	100.4(7)		
$\mathrm{Cr}(1) \mathrm{O}(8) \mathrm{Cr}(2)$	93.2(7)		
$\mathrm{Cr}(2) \mathrm{O}(9) \mathrm{Cr}(3)$	93.6(7)		
$\mathrm{Cr}(1) \mathrm{O}(10) \mathrm{Cr}(3)$	94.5(7)		
$\mathrm{Cr}(4) \mathrm{O}(11) \mathrm{Cr}(5)$	100.4(8)		
$\mathrm{Cr}(4) \mathrm{O}(11) \mathrm{Cr}(6)$	101.0(8)		
$\mathrm{Cr}(5) \mathrm{O}(11) \mathrm{Cr}(6)$	101.0(8)		
$\mathrm{Cr}(4) \mathrm{O}(12) \mathrm{Cr}(5)$	93.9(7)		
$\mathrm{Cr}(5) \mathrm{O}(13) \mathrm{Cr}(6)$	94.3(7)		
$\mathrm{Cr}(4) \mathrm{O}(14) \mathrm{Cr}(6)$	94.2(7)		

$\left(\nu(\mathrm{CO}), 1845\right.$ and $1765 \mathrm{~cm}^{-1}$) for $1-2 \mathrm{~min}$. A green-brown precipitate was immediately formed. It was isolated by decantation and then extracted by 10 ml of THF. The brown-green extract thus obtained was slowly concentrated in an argon flow at room temperature for 20 h up to half the initial volume and cooled to $-18^{\circ} \mathrm{C}$. In 1 day green-brown prisms precipitated, which were isolated by decantation, washed with cold $\left(-70^{\circ} \mathrm{C}\right)$ THF and dried in an argon flow at $22^{\circ} \mathrm{C}$.

Yield $0.13 \mathrm{~g}\left(20.2 \%\right.$). IR spectrum (ν, cm^{-1}): $820 \mathrm{~s}, 1030 \mathrm{~m}, 1175 \mathrm{~m}, 1405 \mathrm{~m}, 1770 \mathrm{vs}$ br, $1910 \mathrm{~s}, 1945 \mathrm{~m}, 2950 \mathrm{~m}$ br.

References

I I.L. Eremenko, A.A. Pasynskii, Yu.V. Rakitin, O.G. Ellert, V.M. Novotortsev, V.T. Kalinnikov, V.E. Shklover, Yu. T. Struchkov, J. Organomet. Chem., 256 (1983) 291.
2 M.H. Chisholm, F.A. Cotton. M.W. Extine, D.C. Rideout, Inorg. Chem., 18 (1979) 120.
3 S.E. Nefedov, A.A. Pasynskii, I.L. Eremenko, B. Orazsakhatov, V.M. Novotortsev, O.G. Ellert, A.F. Shestakov, A.I. Yanovsky, Yu.T. Struchkov, J. Organomet. Chem. 384 (1990) 279.
4 S. Merola, R.A. Geutill, G.B. Ausell, M.A. Moderik, S. Zents, Organometallics, 1 (1982) 1731
5 D.M. Hamilton, W.S. Willis, G.D. Stucky, J. Am. Chem. Soc., 103 (1981) 4255.
6 S.E. Nefedov, A.A. Pasynskii, 1.L. Eremenko, B. Orazsakhatov, V.M. Novotortsev. O.G. Ellert, A.I. Yanovsky, Yu.T. Struchkov. J. Organomet. Chem., 384 (1990) 295.
7 A.R. Manning. I. Chem, Soc., A, (1968) 651.
8 J.H. Van Vleck, The Theory of Electronic and Magnetic Susceptibilities. Oxford Univ. Press.. London, 1932.
9 V.V. Zelentsov, T.A. Zhemchuzhnikova. U.V. Yablokov, Kh.M. Yakubov. Dokl. Akad. Nauk SSSR. 216 (1974) 844.
10 P.I. Vergamini, H. Vahrenkamp, L.F. Dahl. J. Am. Chem. Soc. 93 (1971) 6327
11 1.L. Eremenko. A.A. Pasynski, E.A. Vasyutinskaya, S.E. Nefedov, A.D. Shaposhnikova, U.G. Ellert, V.M. Novotortsev, A.I. Yanovskii, Yu.T. Struchkov, Metalloorganicheskaja Khim., 1 (1988) 368

12 R.B. King, Organometallic Synthesis, Vol. 1, Transition metal compounds. Academic Press, New York, 1965
13 V.M. Novotortsev, DPh Thesis, Moscow, 1974
14 R.G. Gerr. A.I. Yanovsky, Yu.T. Struchkov, Kristallographiya, 28 (1983) 1029

[^0]: * For part XXI see ref. 6.

[^1]: * Two independent molecules in the cell,

